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Abstract-To investigate the influence of the temperature boundary condition of the third kind on the 
magnetohydrodynamic heat transfer in the thermal entrance region of a flat channel, the energy equation is 
solved by applying the Galerkin-Kantorowich method of variational calculus. The Hartmann velocity 
profile is assumed. The heat generation within the fluid is neglected. It is concluded that there can be a 
significant influence of the Biot number on the local Nusselt number. Representative results are depicted in 

tables. 

NOMENCLATURE 

matrix; 

column vector; 
channel cross section; 
magnetic induction; 
Biot number, equation (4); 

a matrix, equation (8); 
a vector, equation (5); 
Hartmann number, equation (4); 
Nusselt number, equation (15); 
Peclet number, equation (4); 
a vector, equation (11); 
temperature; 
a matrix, equation (8); 
half channel height; 
specific heat at constant pressure; 
eigenvalue, equation (16); 

a function, equation (5); 
overall heat-transfer coefficient; 

characteristic value, equation (5); 

velocity; 
x, y, z, Cartesian coordinate. 

Greek symbols 

tl, dynamic viscosity; 

1, thermal conductivity; 

PL, magnetic permeability; 

P, mass density ; 
Q, electrical conductivity. 

Subscripts 

0, ambient ; 
. 

Lh running index; 

m, mean value; 

W, wall; 
x, y, z, Cartesian coordinate direction; 

0, prescribed value. 

Superscripts 

dimensionless quantity, equation (4); 
(d/dn). 

1. INTRODUCTION 

JN THE previous analyses on the magnetohydrody- 
namic (MHD) laminar forced convection heat transfer 
in the thermal entrance region of a channel, either the 
boundary condition of the first kind characterized by 
the prescribed wall temperature [l-4] or the boun- 

dary condition of the second kind expressed by the 
prescribed wall heat flux is assumed [5-91. A more 
realistic condition in many applications, however, will 
be the temperature boundary condition of the third 
kind: the local wall heat flux is a linear function of the 
local wall temperature. This situation is encountered 
in the heat-transfer process, where the radiative heat 
transfer, describable in terms of Newton’s law of 

cooling, occurs at the channel wall and is, to the 
author’s knowledge for an MHD channel, not re- 

ported in the literature. 
The objective of the present paper is to investigate 

the MHD laminar forced convection heat transfer in 

the thermal entrance region of a flat channel for the 
temperature boundary condition of the third kind. 
Assuming constant fluid properties and fully de- 

veloped Hartmann flow, the energy equation is solved 
by employing the Galerkin-Kantorowich method of 
variational calculus. Since the main concern of this 
analysis is with the influence of the finite wall thermal 
resistance on the heat transfer, the axial heat con- 
duction and the heat generation within the fluid are 
not considered. Their influence is already discussed in 
[9-l 11. 

2. ANALYSIS 

Consider steady, fully developed laminar MHD 
Hartmann flow in a flat channel (Fig. 1). For the region 
x > 0, where a constant ambient temperature is main- 
tained, a uniform magnetic field is imposed in z 
direction and the electric current is allowed to flow in y 
direction. Assuming constant fluid properties and 
neglecting the heat conduction in flow direction and 
the heat generation within the fluid, the laminar forced 
heat convection subject to boundary condition of the 
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1 2 
b 0 

t 0 
approximate temperature field be 

T;= c fj cos (qiz) 

COS (Sj) - (SjjBi) sin (Sj) = 0, (5) 

where the characteristic values sj are to be determined, 
so that the boundary condition is satisfied. Taking the 
energy equation (2) with the natural boundary con- 
dition (3) as the Euler equation of the variational 
formulation, one may solve 

f 

L 
L(T) aT ds = 0 (6) 

0 

to evaluate the unknown functions~(x). 
With 

6 T = 2 (8 T/8&& 
i 

(7 

from equations (2) and (6), one can derive a system of 
ordinary differential equations forfi(R) as follows (for 
details see Appendix) 

Pe[DJ{F’) = [W]fF). (8) 

To calculate the value of the unknown functions at the 
channel entrance, one may use the condition 

s 

1 
g(z)[ T(x = 0)- 7;,l2 dz + min. (9) 

0 

Setting the weighting function as 

g(Z) = &., (10) 
from equations (5) and (9), one can deduce a system of 
algebraic equations forfj(x = 0) as follows (for details 
see Appendix) 

[D-j {F(x = O)> = {Rj. (11) 
The characteristic quantities describing the heat trans- 
fer at the channel walls are 

(aT/aj), = - 1 fisj Sinbj), (12) 

ET 
"X 

j L 

FIG. 1. MHD channel under investigation. 

third kind for temperature can be described by the 
equations [ 121: 

& = Ha[cosh (Ha) - cash (Haz)]/’ 

[Ha cash (Ha) - sinh (Ha)], 

L(T) = Pe&(8 7’/&) - 8 _TliZ@ = 0, 

R = 0: T = IO, T= 1, 

R+cC: T-r r,, T-+0, 

z = 0: @T/@z) = 0, (a 7/S) = 0, 

/zj = 1: ~(~T/~z)+k(T - T,) = 0, 
(a ;i;l&) C BiT = 0, 

(11 

(2) 

(3) 

where k is the overall heat-transfer coefficient based op 
the wall thermal resistance and on the ambient side 
surface resistance. The dimensionless quantities em- 
ployed are 

8, = vxivx,m, o,,, = (l/A) 
s 

u, dA, 
A 

T = (T- T,)/(T,- T,), Pe = v,,,,,c~,P/~~ 

Bi = ck/l, Ha = cBoJ(~h). 

(4) 

To sotve the energy equation (2), the 
Galerkin-Kantorowi~h method of variational cal- 
culus is employed, which allows to reduce a partial 
differential equation to an ordinary one [ 131. Let the 

T= 1 fj cos (Sj), (13) 
j 

(141 

(15) 

Table 1. Local Nusselt numbers for Hn -+ cc and different values of Bi 

X/Fe Bi = 0.01 0.1 1.0 10.0 105.0 Cc 
N =20in(5) N = Gin (16) 

O.cKrOl 286.45 286.28 284.54 268.01 187.64 143.22 222.9 1 
0.0002 233.31 233.19 232.00 220.66 163.08 128.47 161.95 
0.0005 160.04 159.95 159.13 151.61 118.39 98.703 103.54 
0.001 115.24 115.16 114.39 107.71 84.672 73.631 74.006 
0.002 82.525 82.446 81.679 75.428 59.001 53.129 53.144 
0.005 53.471 53.392 52.627 47.044 37.152 34.67 1 34.683 
0.01 38.885 38.805 38.044 33.089 26.714 25.432 25.438 
0.02 28.648 28.567 27.811 23.565 19.642 18.984 18.987 
0.05 19.760 19.678 18.936 15.690 13.765 13.494 13.498 
0.1 15.564 15.481 15.221 12.279 11.227 11.092 11.095 
0.2 13.097 13.017 12.359 10.630 10.101 10.037 10.039 
0.5 12.043 11.972 11.427 10.264 9.9154 9.8699 9.8701 
1.0 11.992 11.923 11.395 10.262 9.9148 9.8696 9.8696 
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Table 2. Local Nusselt numbers for different values of Ha and Bi 

Bi 
0.01 0.1 1.0 10.0 100.0 cc 

Ha=0 

0.0001 
0.0002 
0.0005 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

O.OQOl 
0.0002 
0.0005 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

0.0001 
0.0002 
0.0005 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

0.0001 
0.0002 
0.0005 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 

82.323 82.282 81.888 78.997 74.708 72.252 
64.104 64.060 63.636 60.551 55.212 54.05 1 
47.302 47.260 46.856 44.193 40.109 39.035 
37.571 37.529 37.131 34.727 31.741 31.054 
29.893 29.850 29.459 27.320 25.148 24.706 
22.193 22.151 21.769 19.988 18.607 18.362 
17.818 17.775 17.403 15.888 14.930 14.774 
14.427 14.385 14.024 12.764 12.112 12.014 
11.175 11.133 10.795 9.8494 9.4721 9.4197 
9.5250 9.4846 9.1739 8.4562 8.2213 8.1904 
8.5689 8.5326 8.2716 7.7816 7.6483 7.6314 
8.2397 8.2096 8.0040 7.6503 7.5535 7.5410 
8.2319 8.2023 8.0000 7.6499 7.5532 7.5410 

102.09 102.06 
77.563 77.520 
56.384 56.340 
44.638 44.595 
35.341 35.297 
26.034 25.990 
20.754 20.709 
16.666 16.620 
12.745 12.698 
10.742 10.696 
9.5536 9.5103 
9.1104 9.0735 
9.0973 9.0610 

Ha=4 
101.73 
77.102 
55.919 
44.181 
34.885 
25.582 
20.305 
16.222 
12.311 
10.328 
9.1869 
8.8123 
8.8049 

99.270 93.517 87.264 
74.002 68.946 66.948 
52.958 47.763 46.403 
41.498 37.606 36.614 
32.452 29.578 28.940 
23.497 21.625 21.270 
18.489 17.170 16.944 
14.673 13.761 13.618 
11.104 10.568 10.491 
9.3812 9.0423 8.9970 
8.5157 8.3216 8.2968 
8.3307 8.1935 8.1756 
8.3297 8.1931 8.1752 

133.69 133.66 
100.77 100.74 
70.804 70.759 
55.566 55.520 
43.692 43.646 
31.831 31.783 
25.122 25.073 
19.940 19.889 
14.976 14.923 
12.433 12.378 
10.894 10.841 
10.276 10.229 
10.254 10.207 

Ha=10 
133.35 
100.38 
70.319 
55.083 
43.208 
31.340 
24.624 
19.435 
14.465 
11.928 
10.426 
9.8842 
9.8701 

130.77 117.38 104.17 
97.645 91.236 85.302 
67.051 60.992 59.069 
52.017 46.695 45.199 
40.374 36.326 35.310 
28.820 26.097 25.528 
22.362 20.398 20.036 
17.441 16.060 15.831 
12.841 12.014 11.893 
10.609 10.085 10.013 
9.4597 9.1607 9.1226 
9.1951 8.9903 8.9634 
9.1934 8.9897 8.9629 

163.42 163.38 
125.41 125.37 
86.430 86.380 
66.629 66.582 
51.840 51.791 
37.211 37.159 
28.987 28.933 
22.673 22.616 
16.675 16.615 
13.629 13.566 
11.781 11.719 
11.011 10.956 
10.979 10.925 

Ha=20 
162.96 
125.03 
85.946 
66.119 
51.321 
36.675 
28.435 
22.103 
16.085 
13.037 
11.224 
10.541 
10.520 

159.09 135.15 115.80 
122.25 110.62 99.382 
82.625 75.574 71.761 
62.709 56.086 53.888 
48.084 42.717 41.203 
33.702 29.976 29.125 
25.698 22.971 22.434 
19.636 17.709 17.376 
14.036 12.899 12.730 
11.364 10.661 10.566 
9.9986 9.6115 9.5628 
9.6812 9.4225 9.3886 
9.6791 9.4219 9.3882 

3. RESULTS Hartmann number limited by the range 0 < Ha < cc. 
To explore the influence of Biot number on the To assess the accuracy of the present results, the 

MHD channel flow heat transfer, equations (8) and special case of slug flow (Ha + cc) was analyzed for 

(11) were solved by employing the standard several number of terms in temperature approxi- 

Crank-Nicolson procedure for the different values of mation (5). The local Nusselt numbers according to 
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equation (15) for slug flow were compared with the 
results derived from the exact solution 

T = 2 C [sin ej/(ej + sin ej cos ej)] 
I 

x cos (ejZ) exp (- ejX/lPe), (16) 

(ej/Bi) sin ej = cos ej 5. 

It was found that the accuracy of the results depends 
strongly upon the number of terms considered in 
equations (5) and (16): closer a location to the channel 
entrance, larger the number of terms needed to 
describe a good approximation for this location. From 
Table 1, for the special case of Bi -+ cc, one can learn 
that the present local Nusselt numbers based on the 
first twenty terms in equation (5) agree well with the 
results based on the first fifty eigenvalues ej in equation 
(16) for (x/Pe) > 0.0005. This accuracy seems to be 
reasonable for the practical engineering purposes. 
Consequently, all other results are obtained by includ- 
ing the first twenty terms in the approximate solution 

(5). 

6. 

In Tables 1 and 2, the local Nusselt numbers based 
on the first twenty terms in equation (5) are presented 
for a few arbitrarily selected values of Ha and Bi 

including the special cases 

Ha -+ 0: Hagen-Poiseuille flow, 

7. 

8. 

9. 

10. 

11. 

12. 

13. 
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cally conducting fluid flow in a channel with transverse 
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conduction on the thermal entry region heat transfer in 
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Bi -+ cc : prescribed wall temperature. APPENDIX 

The other special case of Bi + 0 cannot be treated with 
the approximation (5), since the wall heat Aux tends to 
zero. For this particular case of prescribed wall heat 
flux, one has to formulate other approximation, for 
instance, as in [9]. 

From the results obtained, one can conclude, that 
there can be a substantial influence of the finite wall 
thermal resistance on the MHD channel flow heat 
transfer, for instance one has 

The elements of the vectors and matrices occuring in 
equations (8) and (11) are listed below. 

i = 1,2,. , N. 

j= 1,2 ,..., N. 

a, = sj-sh a2 = sj+si. 

c, = cos (&), S, = sin (si), 

P, = cos(a,), Q, = sin(a,), 

Pz = cos(a,), Qz = sin(a,), 

W(U) = -(sf/2)(Q11a1 +QA). Nu(Ha = 4, ,?/Pe = 0.001, Bi = 0.01) = 1 l9 

’ Nu(Ha = 4, %lPe = 0.001, Bi = 100) ’ 

Nu(Ha=4,~/Pe-,oc,Bi=0.01)=1.11 

Nu(Ha = 4, ;F/Pe + cc, Bi = 100) ’ 

and the analysis of the problem by neglecting this effect 
may result in considerable error in the solutions 
representing the actual physical conditions. 
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TRANSFERT DE CHALEUR DANS UN CANAL MAGNETO~~~RO~~AMIQUE 
AYEC CONDITIONS AUX LIMITES DE TROISIEME ESPECE 

R&mm&-Ahn d’etudier l’influence des conditions aux limites, de troisieme espece, de temperature sur le 
transfert de chaleur dans la r&ion d'&ablissement thermique d'un canal magn&tohydrodynamique 
bidimensionnel, on r&out Rquation d'tnergie & l’aide de la mBthode de Galerkin-Kantorowich du 
calcul des variations. On suppose un profil de vitesse de Hartman et on neglige la production de 
chaleur a l’interieur du fluide. On est amen& B condure que Ie nombre de Biot peut avoir une influence 

non n6gligeabie sur le nombre de Nusselt. Les r&suitats sent p&sent&s sous forme de tables. 

~%HWOTWHR--&~~I IfCC+qeltOBZtHIIR BJIIIRHUR TeFWOBOrO i"PaHMYHor0 yCROaHR TpeTbero pOEa Ha 
MarHllTor~nponllHaMItreCKMR Tennonepeeoc B HaYanbnoM TermoaoM yrac*Ke nnoc~oro Katfana 
PeItlaJIOCb ypaBHeH&ie 3HepIWM C ilOMOUIbK) BaPMaUWOHHOrO MeTOaa ranepKwHa-KaHTOpOBMua. 
~~~HRTO~O~Y~eH~eOXapTMaHoaCKoMBMnenpO~clfl~CKOpOCTA N06O.rCyTCTBHHTeNlOBblileneH14a 
B~NLIKOCTH.~~c~aHBblBO~,9TOYMC~O~~OMO~eTOKa3blB~TbCyuleCTBe~~Oe8~~~HHeHa~OKa~bHOe 

WiCJIO WyCCeJlbTa. Pe3ynbTaTbl opcnCTaBJleHbl B Tatintluax. 


